LOGIN SHOP
Energy

Hydrogen fuel dream moves closer

By | | comments |
(Image via zmescience.com)

French scientists have discovered a way to make hydrogen quickly and easily, providing hope for a world powered by clean cheap energy. Tim Radford from the Climate News Network reports.

FRENCH SCIENTISTS have discovered a swift and easy way to make hydrogen, the raw material of a whole universe and a clean source of energy for fuel cell transport.

The catch is that it may be a few decades before the process can be turned into industrial-scale production. The bonus is that the discovery may be the key to a deeper understanding of planetary processes and the origin of life.

Hydrogen would be a valuable fuel for a post-carbon world. It is lightweight, fiercely reactive, and burns with oxygen to make water, so it would solve the greenhouse gas emissions problem, and there would be no other air pollution either.

Hydrogen is the power source for 100 billion stars in the Milky Way galaxy and it is a food and energy resource for microbial communities that dwell miles below the Earth’s surface. But in energy terms, it is expensive to make in a laboratory or a factory.

Three researchers from the Université Claude Bernard Lyon 1 in France told the American Geophysical Union at its recent meeting in San Francisco that they think they have solved the puzzle.

They put aluminium oxide, water and olivine ‒ one of the planet’s most common minerals ‒ in a high-pressure vessel known as a diamond anvil cell.

They turned up the heat ‒ to somewhere between 200°C and 300°C ‒ and the pressure to match those far below the deepest ocean floor, and waited. They had expected to wait months. The mixture delivered hydrogen within 24 hours.

Accelerated by aluminium

What happens deep in the Earth’s crust is already known. Water touches olivine under the fierce pressures deep beneath the sea floor and the rock reacts with oxygen in the water to transform itself into another mineral called serpentine. The waste product is hydrogen.

Microbial communities deep in the crust ‒ their existence has been confirmed only in the last two decades ‒ have been devouring the hydrogen in order to multiply and colonise the deep Earth, and these creatures may even have been among the first life forms on Earth.

But in the natural world, hydrogen generation happens slowly. Muriel Andreani and her colleagues have already described their new, high-speed process in the journal American Mineralogist.

The secret seems to have been that they employed aluminium as a catalyst to accelerate the process perhaps 50-fold. Aluminium is about the fifth most common mineral in the Earth’s crust. The problem for the moment is that a diamond anvil cell is a very small vessel.

The technique can ‒ and does ‒ provide important information about geochemistry at levels far deeper than any mineshaft.  But it could hardly make enough hydrogen to drive even a toy car.

Jesse Ausubel is one of the founders of the Deep Carbon Observatory programme, which has been exploring processes in the Earth’s crust.

He says the use of aluminium could be the key, though taking the process to a commercial level will take a significant amount of time:

“Aluminium’s ability to catalyse hydrogen production at a much lower temperature could make an enormous difference. The cost and risk of the process would drop a lot.

“Scaling this up to meet global carbon energy needs in a carbon-free way would probably require 50 years. But a growing market for hydrogen in fuel cells could help the process into the market.”

~ Climate News Network

Support independent journalism Subscribe to IA.

Join Newsletter

*
*
*
Please fill the text in this image in the field below to assist us in eliminating spam
 

 
Recent articles by Tim Radford
Political change is the first step to stopping the climate crisis

Every answer has a cost. Every choice exacts a penalty. A new book reminds us there ...  
Australia's risk of mortality from extreme heat set to rise

Hazards multiply when extreme heat and humidity join in lethal combination and ...  
Can a city's health and wealth really grow on trees?

Planting more urban forests is a simple way not only to improve the health of a ...  
Join the conversation
comments powered by Disqus

Support IAIndependent Australia

Subscribe to IA and investigate Australia today.

Close Subscribe Donate